User Behavior Modeling based on Adaptive Gaussian Mixture Model
نویسندگان
چکیده
منابع مشابه
A Background Modeling Algorithm Based on Improved Adaptive Mixture Gaussian
For better background modeling in scenes with nonstationary background, a background modeling algorithm based on adaptive parameter adjustment of the Mixture Gaussian is proposed. Mixture Gaussians is applied to learn the distribution of per-pixel in the temporal domain and to control adaptive adjustment of number K of Gaussian components through in increasing, deleting or merging similar Gauss...
متن کاملGaussian Mixture Model based Video Modeling
In this project report, we have investigated the video modeling techniques and realized a statistical video representation and modeling scheme [1], which could be used for later video retrieval and content extraction task. This method utilizes Gaussian mixture model (GMM) to segment video content into coherent space-time segments within the video frames and across frames. It treats space and ti...
متن کاملSequential EM for Unsupervised Adaptive Gaussian Mixture Model Based Classifier
In this paper we present a sequential expectation maximization algorithm to adapt in an unsupervised manner a Gaussian mixture model for a classification problem. The goal is to adapt the Gaussian mixture model to cope with the non-stationarity in the data to classify and hence preserve the classification accuracy. Experimental results on synthetic data show that this method is able to learn th...
متن کاملEigenvoice conversion based on Gaussian mixture model
This paper describes a novel framework of voice conversion (VC). We call it eigenvoice conversion (EVC). We apply EVC to the conversion from a source speaker’s voice to arbitrary target speakers’ voices. Using multiple parallel data sets consisting of utterancepairs of the source and multiple pre-stored target speakers, a canonical eigenvoice GMM (EV-GMM) is trained in advance. That conversion ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2012
ISSN: 0975-8887
DOI: 10.5120/9677-4104